Assignment 1 Solution
Question 1
Write a program to check whether a number is prime or not. Calculate its time complexity with proper explanation
- Without Comments
- With comments
import java.util.Scanner;
public class Q1 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a number : ");
int number = scanner.nextInt();
if(isPrime(number)){
System.out.println(number+ " is a Prime Number.");
}else{
System.out.println(number+ " is not a Prime Number.");
}
scanner.close();
}
static boolean isPrime(int num) {
if (num <= 1) {
return false;
}
for (int i = 2; i <= Math.sqrt(num); i++) {
if (num % i == 0) {
return false;
}
}
return true;
}
}
import java.util.Scanner;
public class Q1 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter a number : ");
int number = scanner.nextInt(); // read an integer input from the user
// check if the input number is prime and print the result
if(isPrime(number)){
System.out.println(number+ " is a Prime Number.");
}else{
System.out.println(number+ " is not a Prime Number.");
}
scanner.close(); // close the scanner object to release resources
}
/**
* Checks if a given number is prime or not
* @param num the number to check
* @return true if the number is prime, false otherwise
*/
static boolean isPrime(int num) {
if (num <= 1) { // 1 is not a prime number, so return false
return false;
}
for (int i = 2; i <= Math.sqrt(num); i++) { // iterate from 2 to the square root of the number
if (num % i == 0) { // if the number is divisible by any integer between 2 and its square root, then it's not prime
return false;
}
}
return true; // if the number is not divisible by any integer between 2 and its square root, then it's prime
}
}
// The time complexity of this algorithm is O(sqrt(n)), where n is the input number.
// This is because we iterate from 2 to the square root of n, which reduces the number of iterations required compared to iterating up to n itself.
// Since the time complexity is proportional to the square root of the input, the algorithm is considered to be quite efficient for large inputs.
Credit:
Question 2
Write a program to find the binary equivalent of a decimal number. Calculate its time complexity
- Without Comments
- With comments
import java.util.Scanner;
public class Q2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a number : ");
int decimal = scanner.nextInt();
System.out.print("The binary of " + decimal + " is: ");
decToBinary(decimal);
scanner.close();
}
static void decToBinary(int decimal) {
int[] binary = new int[40];
int index = 0;
while (decimal > 0) {
binary[index++] = decimal % 2;
decimal /= 2;
}
for (int i = index - 1; i >= 0; i--) {
System.out.print(binary[i]);
}
}
}
import java.util.Scanner;
public class Q2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter a number : ");
int decimal = scanner.nextInt(); // read an integer input from the user
System.out.print("The binary of " + decimal + " is: ");
decToBinary(decimal); // convert decimal to binary and print the result
scanner.close(); // close the scanner object to release resources
}
/**
* Converts a decimal number to binary representation and prints it
* @param decimal the decimal number to convert
*/
static void decToBinary(int decimal) {
int[] binary = new int[40]; // array to store the binary digits
int index = 0; // index to keep track of the current position in the binary array
while (decimal > 0) {
binary[index++] = decimal % 2; // calculate the remainder when divided by 2 and store it in the binary array
decimal /= 2; // divide decimal by 2 to move to the next digit
}
for (int i = index - 1; i >= 0; i--) {
System.out.print(binary[i]); // print the binary digits in reverse order
}
}
}
// The time complexity of this algorithm is O(log n), where n is the input decimal number.
// This is because in each iteration, we divide the decimal number by 2, which effectively reduces the number of digits by half.
// The number of iterations required to reduce the decimal number to 0 is proportional to log n.
// Therefore, the algorithm is considered to be quite efficient for large inputs.
Credit:
Question 3
Write a program to find the reverse of a number and find its time complexity
- Without Comments
- With comments
import java.util.Scanner;
public class Q3 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a number : ");
int number = scanner.nextInt();
int reversedNumber = reverse(number);
System.out.println("Reverse of " + number + " is " + reversedNumber);
scanner.close();
}
static int reverse(int number) {
int reversedNumber = 0;
while (number != 0) {
int digit = number % 10;
reversedNumber = reversedNumber * 10 + digit;
number /= 10;
}
return reversedNumber;
}
}
import java.util.Scanner;
public class Q3 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter a number : ");
int number = scanner.nextInt(); // read an integer input from the user
int reversedNumber = reverse(number); // reverse the number
System.out.println("Reverse of " + number + " is " + reversedNumber); // print the reversed number
scanner.close(); // close the scanner object to release resources
}
/**
* Reverses the digits of a given number
* @param number the number to reverse
* @return the reversed number
*/
static int reverse(int number) {
int reversedNumber = 0;
while (number != 0) {
int digit = number % 10; // extract the last digit of the number
reversedNumber = reversedNumber * 10 + digit; // add the digit to the reversed number
number /= 10; // remove the last digit from the number
}
return reversedNumber;
}
}
// The time complexity of this algorithm is O(log n), where n is the input decimal number.
// This is because in each iteration, we divide the number by 10, reducing its value by 10 times with each iteration.
// The number of iterations required to reduce the number to 0 is proportional to log n.
// Therefore, the algorithm is considered to be quite efficient for large inputs.
Credit:
Question 4
Write a program to search an element using binary search and calculate its time complexity
- Without Comments
- With comments
import java.util.Arrays;
import java.util.Scanner;
public class Q4 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
System.out.print("Enter the element to be searched : ");
int key = scanner.nextInt();
int index = binarySearch(arr, size, key);
if(index != -1){
System.out.println("Element " + key + " found at index : " + index);
} else {
System.out.println("Element not found.");
}
scanner.close();
}
public static int binarySearch(int[] arr, int size, int key) {
int low = 0;
int high = size - 1;
int mid;
while (low <= high) {
mid = (low + high) / 2;
if (arr[mid] == key) {
return mid;
} else if (arr[mid] < key) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return -1;
}
}
import java.util.Arrays;
import java.util.Scanner;
public class Q4 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter array size : ");
int size = scanner.nextInt(); // read the size of the array
int[] arr = new int[size]; // create an array to store the elements
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt(); // read each element of the array
}
Arrays.sort(arr); // sort the array in ascending order
System.out.print("Enter the element to be searched : ");
int key = scanner.nextInt(); // read the element to be searched
int index = binarySearch(arr, size, key); // perform binary search
if(index != -1){
System.out.println("Element " + key + " found at index : " + index);
} else {
System.out.println("Element not found.");
}
scanner.close(); // close the scanner object to release resources
}
/**
* Performs binary search on a sorted array to find a given element
* @param arr the sorted array
* @param size the size of the array
* @param key the element to be searched
* @return the index of the element if found, -1 otherwise
*/
public static int binarySearch(int[] arr, int size, int key) {
int low = 0;
int high = size - 1;
int mid;
while (low <= high) {
mid = (low + high) / 2; // calculate the middle index
if (arr[mid] == key) { // if the middle element is equal to the key, return the index
return mid;
} else if (arr[mid] < key) { // if the middle element is less than the key, search in the right half
low = mid + 1;
} else { // if the middle element is greater than the key, search in the left half
high = mid - 1;
}
}
return -1; // element not found
}
}
// The time complexity of this algorithm is O(log n), where n is the size of the input array.
// This is because in each iteration of the binary search, we divide the search space in half, effectively reducing the size of the search space.
// The number of iterations required to find the element is proportional to log n.
// Therefore, the algorithm is considered to be quite efficient for large inputs.
Credit:
Question 5
Given an array, write a program to rotate its element K numbers of times. Explain its time complexity
- Without Comments
- With comments
import java.util.Scanner;
public class Q5 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
System.out.print("Enter k : ");
int k = scanner.nextInt();
rotateArray(arr, k);
scanner.close();
}
static void rotateArray(int[] arr, int k) {
int temp;
for (int j = 1; j <= k; j++) {
temp = arr[0];
for (int i = 0; i < arr.length - 1; i++) {
arr[i] = arr[i + 1];
}
arr[arr.length - 1] = temp;
}
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
}
import java.util.*;
public class Q5 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter array size : ");
int size = scanner.nextInt(); // read the size of the array
int[] arr = new int[size]; // create an array to store the elements
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt(); // read each element of the array
}
System.out.print("Enter k : ");
int k = scanner.nextInt(); // read the value of k
rotateArray(arr, k); // rotate the array by k positions
scanner.close(); // close the scanner object to release resources
}
/**
* Rotates an array by k positions to the right
* @param arr the array to rotate
* @param k the number of positions to rotate
*/
static void rotateArray(int[] arr, int k) {
int temp;
for (int j = 1; j <= k; j++) {
temp = arr[0]; // store the first element
// Shift all elements to the left
for (int i = 0; i < arr.length - 1; i++) {
arr[i] = arr[i + 1];
}
arr[arr.length - 1] = temp; // place the stored element at the end
}
// Print the rotated array
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
}
Credit:
Question 6
Given an array of positive and negative integers, write a program to find a contiguous subarray whose sum of elements is maximum
- Without Comments
- With comments
import java.util.Scanner;
public class Q6 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
printArray(arr);
maxSubarray(arr);
scanner.close();
}
static void printArray(int[] arr) {
System.out.print("The array is : ");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
static void maxSubarray(int[] nums) {
int sum = 0;
int max = nums[0];
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (sum > max)
max = sum;
if (sum < 0)
sum = 0;
}
System.out.println("The maximum subarray sum is: " + max);
}
}
import java.util.*;
public class Q6 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter array size : ");
int size = scanner.nextInt(); // read the size of the array
int[] arr = new int[size]; // create an array to store the elements
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt(); // read each element of the array
}
printArray(arr); // print the array
maxSubarray(arr); // find the maximum subarray sum
scanner.close(); // close the scanner object to release resources
}
/**
* Prints the elements of an array
* @param arr the array to print
*/
static void printArray(int[] arr) {
System.out.print("The array is : ");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
/**
* Finds the maximum subarray sum
* @param nums the input array
*/
static void maxSubarray(int[] nums) {
int sum = 0;
int max = nums[0];
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (sum > max)
max = sum;
if (sum < 0)
sum = 0;
}
System.out.println("The maximum subarray sum is: " + max);
}
}
Credit:
Question 7
Given an array, write a program to arrange its elements in waveform such that odd elements are lesser than its neighboring even elements
- Without Comments
- With comments
import java.util.Scanner;
public class Q7 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
printArray(arr);
waveform(arr);
scanner.close();
}
static void printArray(int[] arr) {
System.out.print("The array is : ");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
static void swap(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
public static void waveform(int[] arr) {
for (int i = 0; i < arr.length - 1; i += 2) {
if (i > 0 && arr[i - 1] > arr[i]) {
swap(arr, i - 1, i);
}
if (arr[i] < arr[i + 1]) {
swap(arr, i, i + 1);
}
}
System.out.println("Waveform array is:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
import java.util.*;
public class Q7 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in); // create a scanner object to read input from the user
System.out.print("Enter array size : ");
int size = scanner.nextInt(); // read the size of the array
int[] arr = new int[size]; // create an array to store the elements
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt(); // read each element of the array
}
printArray(arr); // print the array
waveform(arr); // convert the array to waveform
scanner.close(); // close the scanner object to release resources
}
/**
* Prints the elements of an array
* @param arr the array to print
*/
static void printArray(int[] arr) {
System.out.print("The array is : ");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
/**
* Swaps two elements in an array
* @param arr the array
* @param a index of the first element
* @param b index of the second element
*/
static void swap(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
/**
* Converts an array to its waveform representation
* @param arr the input array
*/
public static void waveform(int[] arr) {
for (int i = 0; i < arr.length - 1; i += 2) {
if (i > 0 && arr[i - 1] > arr[i]) {
swap(arr, i - 1, i);
}
if (arr[i] < arr[i + 1]) {
swap(arr, i, i + 1);
}
}
System.out.println("Waveform array is:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
Credit:
Question 8
Given an array of size N, containing elements from 0 to N-1. All values from 0 to N-1 are present in array and if they are not there than -1 is there to take place. Write a program to arrange values of the array so that value i is stored at arr[i]
- Without Comments
- With comments
import java.util.Scanner;
public class Q8 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
indexArray(arr);
scanner.close();
}
static void indexArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != arr[i]) {
for (int j = i; j < arr.length; j++) {
if (i == arr[j]) {
swap(arr, i, j);
break;
}
}
if (i != arr[i]) {
for (int j = i; j < arr.length; j++) {
if (arr[j] == -1) {
swap(arr, i, j);
break;
}
}
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
static void swap(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
}
import java.util.Scanner;
public class Q8 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size : ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.print("Enter array elements : ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
indexArray(arr);
scanner.close();
}
/**
* Rearranges the array such that each element is at the index equal to its value
* @param arr the input array
*/
static void indexArray(int[] arr) {
for (int i = 0; i < arr.length; i++) {
if (i != arr[i]) { // If the current element is not at the correct index
for (int j = i; j < arr.length; j++) {
if (i == arr[j]) { // Find the element that should be at the current index
swap(arr, i, j); // Swap the elements
break;
}
}
if (i != arr[i]) { // If the element is still not at the correct index
for (int j = i; j < arr.length; j++) {
if (arr[j] == -1) { // Find an empty slot (-1) to place the element
swap(arr, i, j); // Swap the elements
break;
}
}
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
/**
* Swaps two elements in an array
* @param arr the array
* @param a index of the first element
* @param b index of the second element
*/
static void swap(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
}
Credit:
Question 9
Given an unsorted array, find the smallest positive number missing in the array
- Without Comments
- With comments
import java.util.*;
public class Q9 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter array size: ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.println("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
findMissingNumber(arr);
scanner.close();
}
static void findMissingNumber(int arr[]) {
int missingNumber = 0;
int containsOne = 0;
for (int i = 0; i < arr.length - 1; i++) {
if ((arr[0] > 0) && (arr[0] != 1)) {
missingNumber = 1;
break;
} else if ((arr[i + 1] != arr[i] + 1) && (arr[i] + 1 > 0)) {
missingNumber = arr[i] + 1;
break;
}
if (arr[i] == 1)
containsOne = 1;
}
if ((missingNumber != 0) && (containsOne != 1))
System.out.println("Smallest positive missing number = 1");
else if (missingNumber != 0)
System.out.println("Smallest positive missing number = " + missingNumber);
else
System.out.println("No missing number");
}
}
import java.util.*;
public class Q9 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter array size: ");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.println("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
findMissingNumber(arr);
scanner.close();
}
/**
* Finds the smallest positive missing number in the sorted array.
*
* @param arr the sorted array
*/
static void findMissingNumber(int arr[]) {
int missingNumber = 0;
int containsOne = 0;
for (int i = 0; i < arr.length - 1; i++) {
if ((arr[0] > 0) && (arr[0] != 1)) {
missingNumber = 1;
break;
} else if ((arr[i + 1] != arr[i] + 1) && (arr[i] + 1 > 0)) {
missingNumber = arr[i] + 1;
break;
}
if (arr[i] == 1)
containsOne = 1;
}
if ((missingNumber != 0) && (containsOne != 1))
System.out.println("Smallest positive missing number = 1"); // If the missingNumber is not found and the array doesn't contain 1, then the smallest positive missing number is 1.
else if (missingNumber != 0)
System.out.println("Smallest positive missing number = " + missingNumber); // If the missingNumber is found, print the smallest positive missing number.
else
System.out.println("No missing number"); // If the missingNumber is still 0, it means there are no missing positive numbers in the array.
}
}
Credit:
Question 10
Given a sorted array, rearrange it in maximum-minimum form
- Without Comments
- With comments
import java.util.*;
public class Q10 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
getMaxMin(arr);
scanner.close();
}
static void getMaxMin(int arr[]) {
int result[] = new int[arr.length];
int start = 0, end = arr.length - 1;
for (int i = 0; i < arr.length; i++) {
if (i % 2 == 0) {
result[i] = arr[end];
end--;
} else {
result[i] = arr[start];
start++;
}
}
for (int i = 0; i < result.length; i++) {
System.out.print(result[i] + " ");
}
}
}
import java.util.*;
public class Q10 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
getMaxMin(arr);
scanner.close();
}
// Rearranges the array in such a way that every alternate element
// is either the maximum or minimum element from the sorted array
static void getMaxMin(int arr[]) {
int result[] = new int[arr.length];
int start = 0, end = arr.length - 1;
for (int i = 0; i < arr.length; i++) {
if (i % 2 == 0) {
result[i] = arr[end]; // Store the maximum element
end--;
} else {
result[i] = arr[start]; // Store the minimum element
start++;
}
}
for (int i = 0; i < result.length; i++) {
System.out.print(result[i] + " ");
}
}
}
Credit:
Question 11
Given an array you need to find the maximum sum of arr[i]*(i+1) for all elements such that you are allowed to rotate the array.
- Without Comments
- With comments
import java.util.*;
public class Q11 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
findMaxCircularSum(arr);
scanner.close();
}
static void findMaxCircularSum(int arr[]) {
int c, s = 0, sum;
int circularSums[] = new int[arr.length];
for (int j = 1; j <= arr.length; j++) {
c = arr[0];
sum = 0;
for (int i = 0; i < arr.length - 1; i++) {
arr[i] = arr[i + 1];
}
arr[arr.length - 1] = c;
for (int i = 0; i < arr.length; i++) {
sum = sum + (arr[i] * (i + 1));
}
circularSums[s] = sum;
s++;
}
int max = circularSums[0];
for (int i = 0; i < arr.length; i++) {
if (max < circularSums[i]) {
max = circularSums[i];
}
}
System.out.println("Max = " + max);
}
}
import java.util.*;
public class Q11 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
findMaxCircularSum(arr);
scanner.close();
}
// Finds the maximum circular sum of the given array
static void findMaxCircularSum(int arr[]) {
int c, s = 0, sum;
int circularSums[] = new int[arr.length];
for (int j = 1; j <= arr.length; j++) {
c = arr[0]; // Store the first element
sum = 0;
for (int i = 0; i < arr.length - 1; i++) {
arr[i] = arr[i + 1]; // Shift elements to the left
}
arr[arr.length - 1] = c; // Move the first element to the end
for (int i = 0; i < arr.length; i++) {
sum = sum + (arr[i] * (i + 1)); // Calculate the sum with weighted elements
}
circularSums[s] = sum; // Store the circular sum
s++;
}
int max = circularSums[0];
for (int i = 0; i < arr.length; i++) {
if (max < circularSums[i]) {
max = circularSums[i]; // Find the maximum circular sum
}
}
System.out.println("Max = " + max);
}
}
Credit:
Question 12
Given an array arr[], find the maximum distance between indices i and j, such that arr[j] > arr[i]
- Without Comments
- With comments
import java.util.*;
public class Q12 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
int maxDifference = ArrayIndexMaxDiff(arr, size);
System.out.println("The Maximum Difference is: " + maxDifference);
scanner.close();
}
static int ArrayIndexMaxDiff(int[] arr, int size) {
int maxDiff = -1;
int j;
for (int i = 0; i < size; i++) {
j = size - 1;
while (j > i) {
if (arr[j] > arr[i]) {
maxDiff = Math.max(maxDiff, j - i);
break;
}
j -= 1;
}
}
return maxDiff;
}
}
import java.util.*;
public class Q12 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
int maxDifference = ArrayIndexMaxDiff(arr, size);
System.out.println("The Maximum Difference is: " + maxDifference);
scanner.close();
}
// Finds the maximum difference between the indices of two elements
// such that the element at the later index is greater than the element at the earlier index
static int ArrayIndexMaxDiff(int[] arr, int size) {
int maxDiff = -1;
int j;
for (int i = 0; i < size; i++) {
j = size - 1;
while (j > i) {
if (arr[j] > arr[i]) {
maxDiff = Math.max(maxDiff, j - i); // Update maxDiff if a greater difference is found
break;
}
j -= 1;
}
}
return maxDiff;
}
}
Credit:
Question 13
Given two arrays in increasing order you need to find the maximum sum by choosing a few consecutive elements from one array and then a few elements from another array. The element switching can happen at transition points only when the element value is the same in both arrays
- Without Comments
- With comments
public class Q13 {
public static void main(String[] args) {
int arr1[] = {12, 13, 18, 20, 22, 26, 70};
int arr2[] = {11, 15, 18, 19, 20, 26, 30, 31};
findMaxPathSum(arr1, arr2);
}
static void findMaxPathSum(int arr1[], int arr2[]) {
int i = 0, j = 0, result = 0, sum1 = 0, sum2 = 0;
while (i < arr1.length && j < arr2.length) {
if (arr1[i] < arr2[j]) {
sum1 += arr1[i];
i++;
} else if (arr1[i] > arr2[j]) {
sum2 += arr2[j];
j++;
} else {
result += Math.max(sum1, sum2);
result += arr1[i];
sum1 = 0;
sum2 = 0;
i++;
j++;
}
}
while (i < arr1.length) {
sum1 += arr1[i];
i++;
}
while (j < arr2.length) {
sum2 += arr2[j];
j++;
}
result += Math.max(sum1, sum2);
System.out.println("Max Path sum = " + result);
}
}
public class Q13 {
public static void main(String[] args) {
int arr1[] = {12, 13, 18, 20, 22, 26, 70};
int arr2[] = {11, 15, 18, 19, 20, 26, 30, 31};
findMaxPathSum(arr1, arr2);
}
// Finds the maximum path sum by traversing two sorted arrays
static void findMaxPathSum(int arr1[], int arr2[]) {
int i = 0, j = 0, result = 0, sum1 = 0, sum2 = 0;
// Traverse both arrays simultaneously
while (i < arr1.length && j < arr2.length) {
if (arr1[i] < arr2[j]) {
sum1 += arr1[i];
i++;
} else if (arr1[i] > arr2[j]) {
sum2 += arr2[j];
j++;
} else {
result += Math.max(sum1, sum2); // Add the maximum sum so far to the result
result += arr1[i]; // Add the common element to the result
sum1 = 0;
sum2 = 0;
i++;
j++;
}
}
// If one array is exhausted, add the remaining elements of the other array to the respective sum
while (i < arr1.length) {
sum1 += arr1[i];
i++;
}
while (j < arr2.length) {
sum2 += arr2[j];
j++;
}
result += Math.max(sum1, sum2); // Add the remaining sum to the result
System.out.println("Max Path sum = " + result);
}
}
Credit:
Question 14
Write a recursive algorithm to solve the Tower of Hanoi problem
- Without Comments
- With comments
import java.util.Scanner;
public class Q14 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the number of discs: ");
int num = scanner.nextInt();
System.out.println("The sequence of moves is:");
towerOfHanoi(num, 'A', 'C', 'B');
scanner.close();
}
public static void towerOfHanoi(int numberOfDiscs, char source, char destination, char auxiliary) {
if (numberOfDiscs < 1) {
return;
}
towerOfHanoi(numberOfDiscs - 1, source, auxiliary, destination);
System.out.println("Move disk " + numberOfDiscs + " from peg " + source + " to peg " + destination);
towerOfHanoi(numberOfDiscs - 1, auxiliary, destination, source);
}
}
import java.util.Scanner;
public class Q14 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the number of discs: ");
int num = scanner.nextInt();
System.out.println("The sequence of moves is:");
towerOfHanoi(num, 'A', 'C', 'B');
scanner.close();
}
// Solves the Tower of Hanoi puzzle for the given number of discs
public static void towerOfHanoi(int numberOfDiscs, char source, char destination, char auxiliary) {
if (numberOfDiscs < 1) {
return; // Base case: If the number of discs is less than 1, return
}
towerOfHanoi(numberOfDiscs - 1, source, auxiliary, destination); // Move numberOfDiscs-1 discs from source to auxiliary peg
System.out.println("Move disk " + numberOfDiscs + " from peg " + source + " to peg " + destination);
towerOfHanoi(numberOfDiscs - 1, auxiliary, destination, source); // Move numberOfDiscs-1 discs from auxiliary to destination peg
}
}
Credit:
Question 15
Write a recursive function to find the GCD of two numbers. Write the recurrence of the function and solve it for a solution
- Without Comments
- With comments
import java.util.Scanner;
public class Q15 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter A: ");
int a = scanner.nextInt();
System.out.println("Enter B: ");
int b = scanner.nextInt();
System.out.print("The GCD of " + a + " and " + b + " is: " + calculateGCD(a, b));
scanner.close();
}
public static int calculateGCD(int a, int b) {
if (a < b) {
return calculateGCD(b, a);
}
if (a % b == 0) {
return b;
}
return calculateGCD(b, a % b);
}
}
import java.util.Scanner;
public class Q15 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter A: ");
int a = scanner.nextInt();
System.out.println("Enter B: ");
int b = scanner.nextInt();
System.out.print("The GCD of " + a + " and " + b + " is: " + calculateGCD(a, b));
scanner.close();
}
// Calculates the Greatest Common Divisor (GCD) of two numbers using the Euclidean algorithm
public static int calculateGCD(int a, int b) {
if (a < b) {
return calculateGCD(b, a); // Swap a and b if a is smaller than b
}
if (a % b == 0) {
return b; // Base case: If b divides a evenly, b is the GCD
}
return calculateGCD(b, a % b); // Recursive case: Calculate GCD using the remainder (a % b)
}
}
Credit:
Question 16
Write a program to find all permutations of an integer list recursively
- Without Comments
- With comments
import java.util.Scanner;
public class Q16 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
System.out.println("All the permutations of the array are:");
permutation(arr, 0, size);
scanner.close();
}
public static void permutation(int[] arr, int start, int length) {
if (length == start) {
printArray(arr, length);
return;
}
for (int i = start; i < length; i++) {
swap(arr, start, i);
permutation(arr, start + 1, length);
swap(arr, start, i);
}
}
static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
static void printArray(int[] arr, int length) {
for (int i = 0; i < length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
import java.util.Scanner;
public class Q16 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
System.out.println("All the permutations of the array are:");
permutation(arr, 0, size);
scanner.close();
}
// Generates all permutations of the array
public static void permutation(int[] arr, int start, int length) {
if (length == start) {
printArray(arr, length);
return;
}
for (int i = start; i < length; i++) {
swap(arr, start, i);
permutation(arr, start + 1, length);
swap(arr, start, i);
}
}
// Swaps two elements in the array
static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
// Prints the array
static void printArray(int[] arr, int length) {
for (int i = 0; i < length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
Credit:
Question 17
Write a recursive function to search an element using binary search. Analyze its time complexity
- Without Comments
- With comments
import java.util.*;
public class Q17 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
System.out.print("Enter the element to be searched: ");
int key = scanner.nextInt();
int index = binarySearchRecursive(arr, 0, size - 1, key);
if (index != -1) {
System.out.println("Element " + key + " found at index: " + index);
} else {
System.out.println("Element not found.");
}
scanner.close();
}
public static int binarySearchRecursive(int[] arr, int low, int high, int key) {
if (low > high)
return -1;
int mid = (low + high) / 2;
if (arr[mid] == key) {
return mid;
} else if (arr[mid] < key) {
return binarySearchRecursive(arr, mid + 1, high, key);
} else {
return binarySearchRecursive(arr, low, mid - 1, key);
}
}
}
import java.util.*;
public class Q17 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter array size: ");
int size = scanner.nextInt();
int arr[] = new int[size];
System.out.print("Enter array elements: ");
for (int i = 0; i < arr.length; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
System.out.print("Enter the element to be searched: ");
int key = scanner.nextInt();
int index = binarySearchRecursive(arr, 0, size - 1, key);
if (index != -1) {
System.out.println("Element " + key + " found at index: " + index);
} else {
System.out.println("Element not found.");
}
scanner.close();
}
// Recursive binary search implementation
public static int binarySearchRecursive(int[] arr, int low, int high, int key) {
if (low > high)
return -1;
int mid = (low + high) / 2;
if (arr[mid] == key) {
return mid;
} else if (arr[mid] < key) {
return binarySearchRecursive(arr, mid + 1, high, key);
} else {
return binarySearchRecursive(arr, low, mid - 1, key);
}
}
}
Credit: